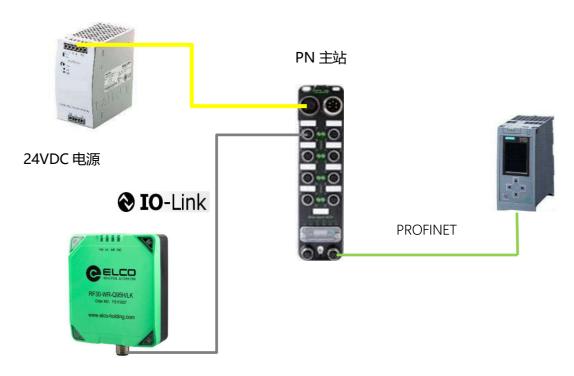


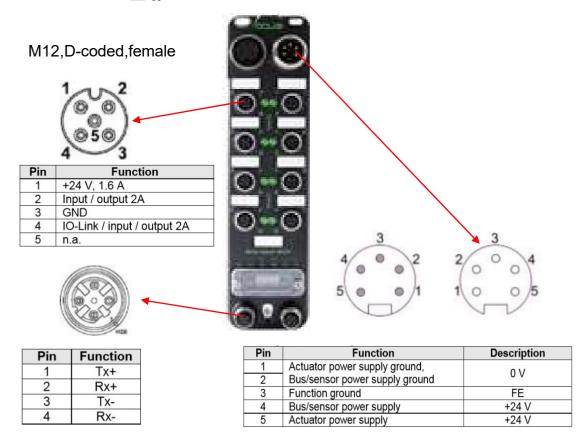
IO-LINK 高频读写头 快速入门手册



宜科(天津)电子有限公司 ELCO (TIANJIN)ELECTRONICS CO.,LTD www.elco-holding.com.cn

1. 硬件接线图

Q95H 高频读写头


2. 产品列表

产品名称	型号或规格	说明
IO-LINK 主站	FCPN-8LKM-8A	PROFINET 主站,8×Class A
高频读写头	RF30-WR-Q95H/LK	IO-Link高频读写头,32Bytes
	RF30-WR-C40H/LK	13.56MHz, ISO 15693
	RF30-WR-M30H/LK	输出功率23dBm
	RF30-WR-MF30H/LK	读取距离: 0-90mm
		(根据标签和使用环境)

3. 产品介绍

3.1. Profinet 主站

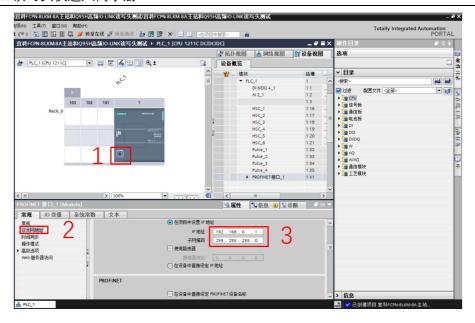
3.2. IO-LINK 高频读写头指示灯说明

产品型号	指示灯	说明	状态
	PW	供电指示灯	供电正常指示灯常亮
DESO MID COELLIN	LK	通讯指示灯	通讯正常指示灯闪烁
RF30-WR-Q95H/LK	WR	读写命令指示灯	有命令交互指示灯闪烁
	TAG	标签检测指示灯	检测到有效标签指示灯常亮
	PW	供电指示灯	供电正常指示灯常亮
RF30-WR-C40H/LK	LK	通讯指示灯	通讯正常指示灯闪烁
	RW	读写命令指示灯	有命令交互指示灯闪烁
	TAG	标签检测指示灯	检测到有效标签指示灯常亮
RF30-WR-M30H/LK RF30-WR-MF30H/LK			供电正常,指示灯绿色常亮
			通讯正常,指示灯绿色闪烁
KF3U-VVK-IVIF3UH/LK			检测到标签,指示灯黄色常亮

4. 硬件组态

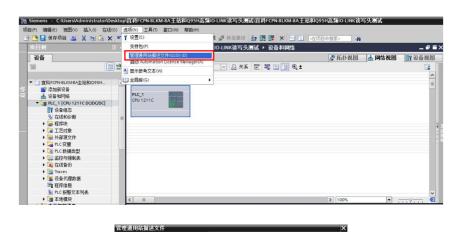
4.1. 建立新项目

4.2. 添加 PLC

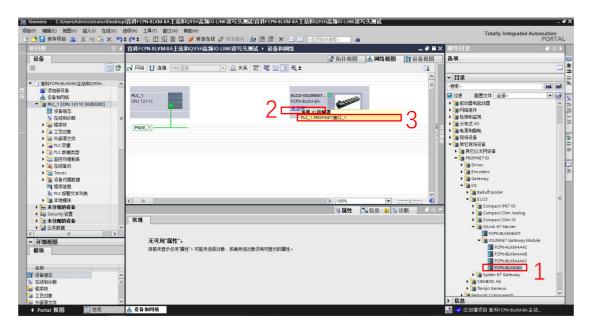


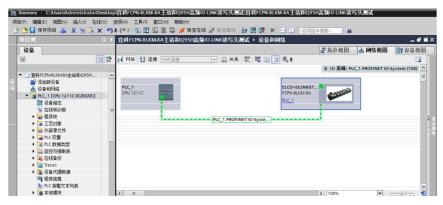
4.3. 添加 Profinet 子网

- 1) 右键单击PLC上 RJ45绿色图标;
- 2) 点击添加子网;
- 3) 配置PLC IP地址。

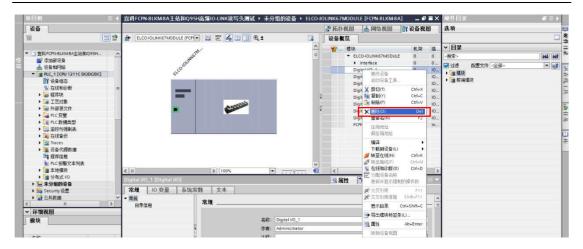


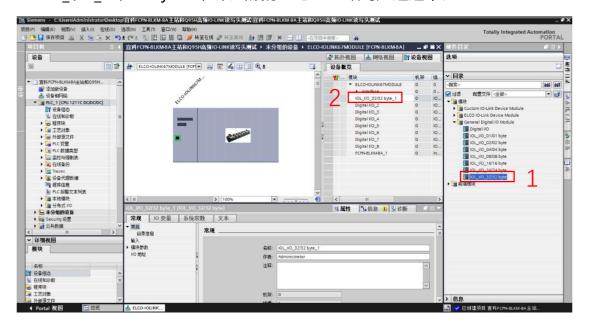
4.4. 添加主站模块的 GSD 文件


本例中采用宜科 FCPN-8LKM-8A 主站,如采用其它品牌主站请跳至"4.6配置 IO-LINK 读写头"开始。



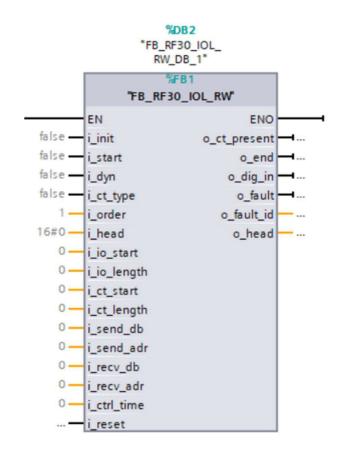
4.5. 连接 PLC 总线网络


连接成功


4.6. 配置 IO-LINK RFID 读写头

双击主站图标,进行主站组态。对拟连接RFID读写头的通道点击右键,删除默认的"Digital I/O":

从右侧硬件目录中选择"模块 "-> "General Digital IO Module" -> "IOL I/O 32/32 byte",双击鼠标组态至主站对应通道中。



组态完成后,进行编译和下载,将组态下载到PLC中。如果PLC下载完成,模块网络通讯仍然存在故障,可以先排查主站模块"分配设备名称"状态是否已OK,要保证组态的主站名称和在线分配的名称一致。

读写头与主站通讯正常后, PW 灯黄色常亮; LK 灯黄色慢速闪烁; WR 灯在读或写操作过程中快速闪烁; TAG 灯有标签可用时蓝色常亮。

5. FB 功能块介绍

5.1. 功能块输入管脚介绍

名称	数据类型	说明
i_init	BOOL	模块初始化,每次 PLC 重新启动后必 须置位一次
i_start	BOOL	执行指令
i_reset	BOOL	功能块重启
i_dyn	BOOL	动态模式开关,当置位"1"时动态模式开启,触发读写头的读或写指令后,执行结果只有当标签在读写头可读写范围内时才执行,未检测到标签时读写头处于命令等待状态,直到读写头检测到标签时,返回执行结果;动态模式为关闭为"0"时,执行结果立即返回
i_ct_type	BOOL	功能保留,保持"0"即可
i_order	WORD	命令类型,1=读操作,2=写操作

IO-LINK 读写头快速入门手册

i_head	BYTE	读写头选择,此功能保留
i_io_start	int	读写头通道硬件组态的起始 I0 地
		址,从组态界面可以查看
i_io_length	WORD	读写头通道硬件组态 input 或
		output 字节长度,一般是固定 16
		字节
i_ct_start	int	需要对标签进行读写操作的起始
		地址
i_ct_length	WORD	需要对标签进行读写的字节长
		度,最大不超过标签的容量
i_send_db	int	写入数据缓存 DB 块编号
i_send_adr	int	写入数据缓存 DB 块起始地址
i_recv_db	int	读出数据缓存 DB 块编号
i_ recv _adr	int	读出数据缓存 DB 块起始地址
i_ ctrl_time	int	读写操作看门狗重试次数

5.2. 功能块输出管脚介绍

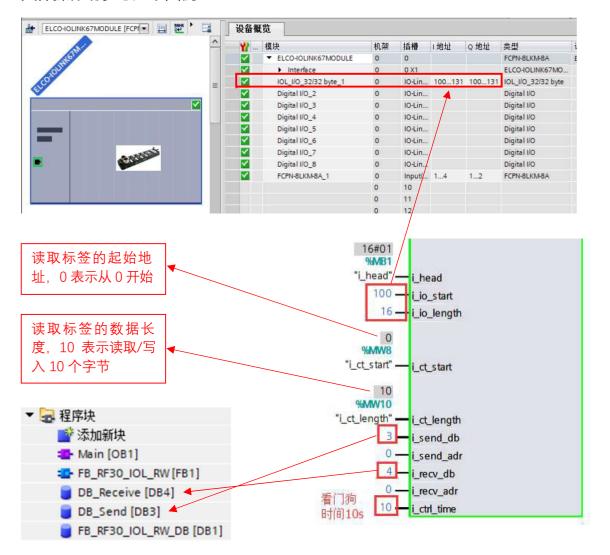
名称	数据类型	说明
o_ct_present	BOOL	读写头检测到标签信号,表明标 签处于读写头可操作范围内
o_end	BOOL	操作完成标志位,无论是否成功 读写标签,每个操作循环均以 "o_end"置 1 作为结束标志
o_dig_in	BOOL	数字量输入状态反馈,此功能保 留
o_fault	BOOL	操作错误标志位,具体错误信息 可参考《5.3 功能块错误代码 表》
o_fault_id	BYTE	操作错误代码,具体含义可参阅 下文中错误代码表
o_head	BOOL	读写头可用标志位,表明读写头 与主站 IO-LINK 通讯正常

5.3. FB 功能块错误代码表

错误代码(HEX)	含义	处理方法
00	无错误	_
01	无标签	查看并调整读写头和标签的距离 标签是否在读写头可读写范围, 可通过读写头标签到位指示灯来

IO-LINK 医与天伏	조八门丁川	
		判断;
02	读数据失败	查看并调整读写头和标签的距离
		标签是否在读写头可读写范围,
		可通过读写头标签到位指示灯来
		判断;
		读取数据长度过长超过标签容量
03	因标签移除而读数据失	如启动动态模式:请确认标签移
	败	动速度不要太快
04	写数据失败	查看并调整读写头和标签的距离
		标签是否在读写头可读写范围,
		可通过读写头标签到位指示灯来
		判断;
		写入数据长度过长超过标签容量
05	因标签移除而读数据失	如启动动态模式:请确认标签移
	败	动速度不要太快
07	读取或写入的标签数据	修改读写数据长度参数在合理范
	长度是 0	围
09	读写头工作异常	检查读写头连接线缆或者检查读
		写头是否有故障
0D	读写头和标签的通讯中	查看并调整读写头和标签的距离
	断	标签是否在读写头可读写范围,
		可通过读写头标签到位指示灯来
		判断;
0F	第 1 位和第 2 位数组内	检查程序
	容不一致	
20	读写地址超出了标签容	检查地址和标签类型
	量	
21	读或写操作不可用	检查标签是否符合读写头可操作
		的类型
30	监控时间失效	修改 FB 块相关参数
31	未定义指令	检查指令
32	初始化字节超出范围	检查 DB 块初始化字节设定范围

6. FB 功能块使用说明


将例程中的 FB 功能块 "RF30_IOL-RW" 复制到新的程序中, IO-LINK 主站每个 RFID 通道都需要单独调用 FB,每调用一次 FB 都会自动生成相应的背景数据块 "RF30_IOL_RW_DB"。

建立两个 DB 块,类型 "array of Byte",大小为 "0...1024",分别命名为

"DB_Receive"和 "DB_Send",用于接收读取数据和发送写入到标签的缓存数据,在 FB 块的 "i_recv_db"和 "i_send_db"管脚分别填写这两个缓存 DB 块的编号。

具体操作请参考如下图例:

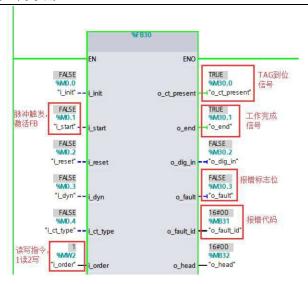
7. FB 块操作流程

7.1. FB初始化:

将Init先置1后置0,初始化FB功能块。

7.2. 写入数据操作:

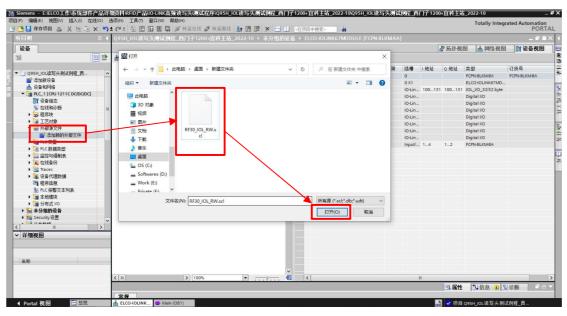
- 1) 在变量表中DB3中写入10 Byte数据到监视值。
- 2) 将编码块放入读写区域, M30.0 (o_ct_present) 显示为1。
- 3) 将MW2修改为2。
- 4) 将M0.1 (i_start) 置为1,启动"写",M0.1为脉冲触发,置1后需复位为0。
- 5) M30.1 (o_end) 闪断后为"1","写"完成。

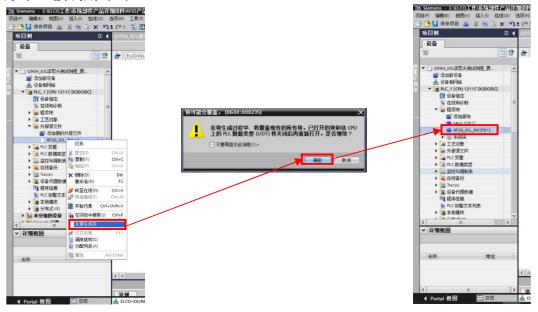

7.3. 读取数据操作:

- 1) 将标签放入读写区域, M30.0 (o_ct_present) 显示为1。
- 2) 将MW2 修改为1。
- 3) 将M0.1 (i_start) 置为1,启动"读",M0.1为脉冲触发,置1后需复位为0。
- 4) M30.1 (o_end) 闪断后为"1","读" 完成。
- 5) 读取完成,查看变量表DB4中的监视值。

注意:

→ i_start触发的前提条件是,TAG到位信号为1,工作完成信号为1,同时报 错标志位为0,否则FB无法正常运行;




附录:导入功能块源文件的方法

由于西门子近年来更新多个 TIA 版本, 宜科提供的 TIA_V15 版本的例程可能您无法直接打开参考, 故我们把前文提到的读写头功能块 FB 生成了相应的源文件, 可以通过博途"导入外部源文件"的方式将功能块导入不同版本的博途软件中, 具体方法如下:

1) 打开博途项目树"外部源文件",双击"添加新的外部文件",选中宜科提供的源文件的存储目录中的"RF30_IOL_RW.sc1"文件,单击打开按钮:

2) 源文件添加到外部源文件列表中后,右键-"从源生成块",点击弹出的对话框确定按钮,源文件生成的块即导入到项目树的程序块当中,然后在程序中直接调用即可。

导入源文件的方法不受博途版本的影响,快速完成测试程序的编写。